Untitled

From Bo, 5 Months ago, written in Plain Text, viewed 105 times. This paste is a reply to Polarization evolution of vector beams generated b from WEIXING SHU - go back
URL https://www.editnotes.com/view/97a84fe1/diff Shorturl https://ul.gd/vRylp Embed
Viewing differences between Polarization evolution of vector beams generated b and Untitled
1. Q. W. Zhan, ?Cylindrical vector beams: from mathematical concepts to applications,? Adv. Opt. Photon. 1, 1?57 (2009). 1(1), 1-57 (2009). 
2. J. Chen, C. Wan, and G. Leuchs, ?Focusing light to a tighter spot,? Opt. Commun. 179, 1?7 (2000). 3. R. Dorn, S. Quabis, Q. Zhan, ?Vectorial optical fields: recent advances and G. Leuchs, ?Sharper focus for a radially polarized light beam,? Phys. Rev. Lett. 91, 233901 (2003). 4. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, ?Near-field second-harmonic generation induced by local field enhancement,? Phys. Rev. Lett. 90, 013903 (2003). 5. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, ?Longitudinal field modes probed by single molecules,? Phys. Rev. Lett. 86, 5251?5254 (2001). 6.future prospects,? Sci. Bull. 63(1), 54?74 (2018).
3.
 K. S. Youngworth and T. G. Brown, ?Focusing of high numerical aperture cylindrical vector beams,? cylindrical-vector beams.? Opt. Express 7, 7 7?87 (2000). 7. Q. Zhan, ?Trapping metallic Rayleigh particles 77?87 (2000).
4. B. Gu, Y. Pan et. al., ?Tight focusing properties of spatial-variant linearly-polarized vector beams,? J. Opt. 43, 18-27 (2014).
5. D. P. Biss, K. S. Youngworth, and T. G. Brown, ?Dark-field imaging 
with radial polarization,? cylindrical-vector beams,? Appl. Opt. Express 12, 3377?3382 (2004). 8.45, 470 (2006).
6.
 C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. Rode, ?Revealing local field structure of focused ultrashort pulses,? Phys. Rev. Lett. 106, 123901 (2011). 9. V. D?Ambrosio, N. Spagnolo, L. D. Re, S. Slussarenko, (2011).
7.Kozawa, 
Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, ?Photonic polarization gears for ultra-sensitive angular measurements,? Nat. Commun. 4, 2432 (2013). 10. D. P. Biss, K. S. Youngworth, and T. G. Brown, ?Dark-field imaging with cylindrical-vector beams,? Appl. Opt. 45, 470?479 (2006). 11.Sato. ?Focusing property of a double-ring-shaped radially polarized beam.? Optics letters 31 6 (2006): 820-2.
8.Wang, Haifeng et al. ?Creation of a needle of longitudinally polarized light in vacuum using binary optics.? Nature Photonics 2 (2008): 501-505.
9.
 X. Wang, J. Chen, Y. Li, Y. Cao, J. Ding, C. Guo, and M. Gu, ?Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam,? Opt. Lett. 36, 2510?2512 (2011). 12. X. Li, T. H. Lan, C. H. Tien, and M. Gu, ?Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,? Nat. Commun. 3, 998 (2012). 13. G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, ?Using Wang, ?Optical orbital angular momentum from the nonseparability curl of vector beams to encode information for optical communication,? Opt. Lett. 40, 4887?4890 (2015). 14. J. T. Barreiro, T. C. Wei, and P. G. Kwiat, ?Remote preparation of single-photon ?hybrid? entangled and vector-polarization states,? polarization,? Phys. Rev. Lett. 105, 030407 (2010). 15. V. D?Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, 253602 (2010).
10. O'Neil, A. T. et al. ?Intrinsic 
and F. Sciarrino, ?Complete experimental toolbox for alignment-free quantum communication,? Nat. Commun. 3, 961 (2012). 16. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, extrinsic nature of the orbital angular momentum of a light beam.? Phys. Rev. Lett. 88(5), 053601 (2002). 
11. X. Ling, X. Yi, X. Zhou, Y. Liu, W. Shu, H. Luo, 
and E. Hasman, ?The formation S. Wen, ?Realization of laser beams with pure azimuthal and radial polarization,? tunable spin-dependent splitting in intrinsic photonic spin Hall effect,? Appl. Phys. Lett. 77, 3322?3324 (2000). 17.105, 151101 (2014).
12. Bliokh, K. et al. ?Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems.? Opt. Express 19(27), 26132-26149 (2011). 
13. Devlin, R. C. et al. ?Arbitrary spin-to?orbital angular momentum conversion of light.? Science 358, 896-901 (2017). 
14.
 Y. Kozawa Liu, X. Ling, X. Yi, X. Zhou, H. Luo, and S. Sato, ?Generation Wen, ?Realization of a radially polarized laser beam by use of a conical Brewster prism,? Opt. Lett. 30, 3063?3065 (2005). 18. T. Grosjean, D. Courjon, and M. Spajer, ?An all-fiber device for generating radially and other polarized light beams,? Opt. Commun. 203, 1?5 (2002). 19. S. Ramachandran, P. Kristensen, and M. F. Yan, ?Generation and propagation 104, 191110 (2014).
15. Chen, Rui et al. ?Compact generation 
of radially polarized arbitrarily accelerating double caustic beams in optical fibers,? with orthogonal polarizations using a dielectric metasurface.? Opt. Lett. 34, 2525?2527 (2009). 20. S. C. Tidwell, D. H. Ford, 45, 551-554 (2020). 
16. He, Yanliang et al. ?Switchable phase 
and W. D. Kimura, ?Generating radially polarized polarization singular beams interferometrically,? Appl.generation using dielectric metasurfaces.? Scientific Reports 7 (2017): n. pag.
17. Kotlyar, V. et al. ?Orbital angular momentum of a laser beam behind an off-axis spiral phase plate,? Opt. Lett. 44(15), 3673-3676 (2019). 
18. Kovalev, A. and V. Kotlyar. ?Orbital angular momentum of an elliptic beam after an elliptic spiral phase plate,? J.
 Opt. Soc. Am. A 36(1), 142-148 (2019). 
19. W. B. Yun 
and M. Ritsch-Marte, ?Tailoring R. Howells, ?High-resolution Fresnel zone plates for x-ray applications by spatial-frequency multiplication,? J. Opt. Soc. Am. A 4, 34?40 (1987).
21. Sabatyan, A.. ?Comprehensive focusing analysis of bi-segment spiral zone plate in producing a variety of structured light beams,? J. Opt. Soc. Am. B 36, 3111-3116 (2019). 
22. Dennis, M. et al. ?Singular optics: optical vortices and polarization singularities.? Progress in Opt. 53, 293-363 (2009). 
20.Gbur, G.. ?Fractional vortex Hilbert's Hotel.? arXiv: Optics (2015): 222-225.
23. G. Gbur, ?Fractional vortex Hilbert?s Hotel,? Optica 3(3), 222-225 (2016). 
24. Selyem, Adam et al. ?Basis-independent tomography and nonseparability witnesses of pure complex vectorial light fields by Stokes projections.? Phys. Rev. A 100, 063842 (2019). 
25. Fang, Y. et al. ?Fractional-topological-charge-induced vortex birth and splitting of light fields on the submicron scale,? Phys. Rev. A 95, 023821 (2017). 
26. Li, P. et al. ?Generation of perfect vectorial vortex beams,? Opt. Lett. 41(10), 2205-2208 (2016). 
27. Moreno, I. et al. ?Generation of integer and fractional vector beams with q-plates encoded onto a spatial light modulator,? Opt. Lett. 41(6), 1305-1308 (2016). 
28. Liu, S. et al. ?Highly efficient generation 
of arbitrary optical vector beams with tunable polarization, phase, and amplitude.? Photon. Res. 6, 228-233 (2018). 
29. Wang, Xi-Lin et al. ?Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,? Opt. Lett. 32(24), 3549-3551 (2007). 
30. Xu, D. et al. ?Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors.? Opt. Express 24(4), 4177-4186 (2016). 
31. Rosales-Guzm'an, C. et al. ?Simultaneous generation of multiple vector beams on a single SLM,? Opt. Express 25(21), 25697-25706 (2017).
32. Vyas, S. et al. ?Self-healing of tightly focused scalar and vector Bessel-Gauss beams at the focal plane.? J. Opt. Soc. Am. A 28(5), 837-843 (2011). 
33. Gu, B. and Y. Cui. ?Nonparaxial and paraxial focusing of azimuthal-variant 
vector beams,? New J.Opt. Express 20(16), 17684-17694 (2012). 
34. Ren, Jin-Li et al. ?Direct observation of a resolvable spin separation in the spin Hall effect of light at an air-glass interface,? Appl.
 Phys. 9, 7 8 (2007). 22. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, ?Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,? Opt. Lett. 32, 3549?3551 (2007). 23. G. Milione, S. Evans, D. A. Nolan, 107, 111105 (2015).
35. Krishna, C. H. 
and R. R. Alfano, ?Higher order Pancharatnam-Berry phase and the S. Roy. ?Polarization singular patterns in modal fields of few-mode optical fiber,? J. Opt. Soc. Am. B 37, 2688-2695 (2020). 
36. Zhao, Yiqiong et al. ?Spin-to-orbital 
angular momentum of light,? conversion in a strongly focused optical beam,? Phys. Rev. Lett. 99(7), 073901 (2007). 
37. Zeng, Jun et al. ?Partially coherent radially polarized fractional vortex beam,? 
Opt. Express 21, 5424?5431 (2013). 25. I. Moreno, J. A. Davis, D. M. Cottrell, 28(8), 11493-11513 (2020). 
38. Zeng, T. 
and R. Donoso, ?Encoding highorder cylindrically Jianping Ding. ?Three-dimensional multiple optical cages formed by focusing double-ring shaped radially and azimuthally polarized light beams,? Appl.beams.? Chin. Opt. 53, 5493?5501 (2014).

Reply to "Untitled"

Here you can reply to the paste above

captcha